coyote mendy
Thursday, October 17, 2013
Hitch a ride to Engadget Expand aboard Gogo's private jet
Related Topics: Wrecking Ball NSYNC VMA 2013 Julie Harris vanessa hudgens Huntington Beach riot
Pa. Caterpillars Predict Wet, Cold Winter
Over the weekend, people in Lewisburg, Pa., gathered for a weather forecast from caterpillars. Woolly bear caterpillars are black, with a brown stripe down the middle. Folklore says the larger the stripe, the milder the winter.
Copyright © 2013 NPR. For personal, noncommercial use only. See Terms of Use. For other uses, prior permission required.
DAVID GREENE, HOST:
Good morning. I'm David Greene. Sit down, Punxsutawney Phil. Over the weekend, people in Lewisburg, Pennsylvania, gathered for a weather forecast from caterpillars. Woolly bear caterpillars are black, with a brown stripe down the middle and folklore says the larger the stripe, the milder the winter. At the 17th annual Woolly Worm Winter Weather Prognostication Festival - say that twice - several woolly bears predicted a wet, cold winter ahead. Of course, they were wrong last year. It's MORNING EDITION.
Copyright © 2013 NPR. All rights reserved. No quotes from the materials contained herein may be used in any media without attribution to NPR. This transcript is provided for personal, noncommercial use only, pursuant to our Terms of Use. Any other use requires NPR's prior permission. Visit our permissions page for further information.
NPR transcripts are created on a rush deadline by a contractor for NPR, and accuracy and availability may vary. This text may not be in its final form and may be updated or revised in the future. Please be aware that the authoritative record of NPR's programming is the audio.
Related Topics: Alexian Lien eric decker powerball numbers ny times Rosy Esparza
Tech Startups Face All The Usual Challenges And More In Gaza
Building an IT startup in the Gaza Strip isn't simple: Electricity is sporadic, there's no mobile 3G and even if you can sell your app outside Gaza's tightly controlled borders, it's difficult to get paid. Still, IT has some advantages in Gaza, and the possibilities have fostered a crop of devout entrepreneurs. At a first-of-its kind session to win seed money this week, Gazan entrepreneurs pitched, among other things, an app that uses music to help colorblind people dress well, a sports social network and 3-D printing for the masses.
Tags: Maria de Villota iTunes Radio Jameis Winston Clemson University Harry Styles
Wednesday, October 16, 2013
U.S. FDA panel votes against expanded use of Amarin drug
By Toni Clarke
(Reuters) - Amarin Corporation Plc's triglyceride-lowering drug Vascepa should not be approved for use in a broader patient population until results from an additional study have been analyzed, an advisory panel to the U.S. Food and Drug Administration said on Wednesday.
The panel voted 9-2 against approval of the drug for patients who also take a cholesterol-lowering statin such as Pfizer Inc's Lipitor and are at high risk of coronary heart disease.
While the drug reduced triglycerides, or blood fats, in a clinical trial, the panel was not convinced that lowering triglycerides would automatically lead to a reduced risk of coronary heart disease or death.
The FDA is not bound to follow the recommendations of its advisory panels but typically does so.
Vascepa is already approved to reduce triglycerides in patients who are not taking statins. Amarin had hoped to market the drug to a much broader patient population. But Dr. David Cooke, clinical director of pediatric endocrinology at Johns Hopkins University School of Medicine and a panelist, said it "has not yet been proven" that Vascepa, or any medication that lowers blood fats, except statins, decreases cardiovascular risk.
The FDA suggested that approval should be withheld pending the results of an 8,000-patient trial being conducted by Amarin that is expected to shed light on whether Vascepa actually cuts cardiovascular risk. Results of the trial are expected in late 2016.
Raghuram Selvaraju, an analyst at Aegis Capital Corp, said the company will "in all likelihood need to raise additional capital" in order to fund operations through to the release of those results. While those results "could still vindicate Amarin," he said, "we believe that moving to the sidelines is probably the most appropriate strategy at this juncture."
Selvaraju cut his recommendation on the stock to "hold" from "buy."
Amarin's shares were halted on Wednesday pending the FDA panel's discussion. They fell to a year-low of $4.50 on Monday following publication of the FDA's initial review of the company's application, which was more cautious than investors had expected.
Vascepa is a purified ethyl ester of eicosapentaenoic acid (EPA) derived from fish oil. EPA, along with a-linolenic acid and docosahexaenoic acid (DHA) are collectively referred to as omega-3 fatty acids.
EPA and DHA are also the major constituents of fish oils derived from cold water fish. The only other approved fish-oil treatment for severe hypertriglyceridemia is Lovaza, which is made by GlaxoSmithKline Plc. Lovaza has not been shown to cut the rate of heart attack or stroke.
(Reporting by Toni Clarke in Washington; Editing by Bernard Orr)
Source: http://news.yahoo.com/u-fda-panel-votes-against-expanded-amarin-drug-191229743--finance.html
Category: Geno Smith Government Shutdown 2013 Shana Tova Jodi Arias Big Brother 15
Ivanka Trump Welcomes Son Joseph Frederick
Source: http://feeds.celebritybabies.com/~r/celebrity-babies/~3/BYmA1c1Vdhc/
Related Topics: eddie aikau GTA 5 Cheats sons of anarchy bay bridge Nick Jonas
Report: Microsoft to boost Xbox TV lineup with street soccer series
Similar Articles: oakland raiders powerball numbers Ezra Is A will smith ariana grande
Sky survey captures key details of cosmic explosions
Public release date: 16-Oct-2013
[
| Share
]
Contact: Brian Bell
bpbell@caltech.edu
626-395-5832
California Institute of Technology
Caltech astronomers report on unique results from the intermediate Palomar Transient Factory
Developed to help scientists learn more about the complex nature of celestial objects in the universe, astronomical surveys have been cataloguing the night sky since the beginning of the 20th century. The intermediate Palomar Transient Factory (iPTF)led by the California Institute of Technology (Caltech)started searching the skies for certain types of stars and related phenomena in February. Since its inception, iPTF has been extremely successful in the early discovery and rapid follow-up studies of transientsastronomical objects whose brightness changes over timescales ranging from hours to daysand two recent papers by iPTF astronomers describe first-time detections: one, the progenitor of a rare type of supernova in a nearby galaxy; the other, the afterglow of a gamma-ray burst in July.
The iPTF builds on the legacy of the Caltech-led Palomar Transient Factory (PTF), designed in 2008 to systematically chart the transient sky by using a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain near San Diego, California. This state-of-the-art, robotic telescope scans the sky rapidly over a thousand square degrees each night to search for transients.
Supernovaemassive exploding stars at the end of their life spanmake up one important type of transient. Since PTF's commissioning four years ago, its scorecard stands at over 2,000 spectroscopically classified supernovae. The unique feature of iPTF is brand-new technology that is geared toward fully automated, rapid response and follow-up within hours of discovery of a new supernova.
The first paper, "Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn," appears in the September 20 issue of Astrophysical Journal Letters and describes the detection of a so-called Type Ib supernova. Type Ib supernovae are rare explosions where the progenitor star lacks an outer layer of hydrogen, the most abundant element in the universe, hence the "stripped envelope" moniker. It has proven difficult to pin down which kinds of stars give rise to Type Ib supernovae. One of the most promising ideas, says graduate student and lead author Yi Cao, is that they originate from Wolf-Rayet stars. These objects are 10 times more massive and thousands of times brighter than the sun and have lost their hydrogen envelope by means of very strong stellar winds. Until recently, no solid evidence existed to support this theory. Cao and colleagues believe that a young supernova that they discovered, iPTF13bvn, occurred at a location formerly occupied by a likely Wolf-Rayet star.
Supernova iPTF13bvn was spotted on June 16, less than a day after the onset of its explosion. With the aid of the adaptive optics system used by the 10-meter Keck telescopes in Hawaiiwhich reduces the blurring effects of Earth's atmospherethe team obtained a high-resolution image of this supernova to determine its precise position. Then they compared the Keck image to a series of pictures of the same galaxy (NGC 5806) taken by the Hubble Space Telescope in 2005, and found one starlike source spatially coincident to the supernova. Its intrinsic brightness, color, and sizeas well as its mass-loss history, inferred from supernova radio emissionswere characteristic of a Wolf-Rayet star.
"All evidence is consistent with the theoretical expectation that the progenitor of this Type Ib supernova is a Wolf-Rayet star," says Cao. "Our next step is to check for the disappearance of this progenitor star after the supernova fades away. We expect that it will have been destroyed in the supernova explosion."
Though Wolf-Rayet progenitors have long been predicted for Type Ib supernova, the new work represents the first time researchers have been able to fill the gap between theory and observation, according to study coauthor and Caltech alumna Mansi Kasliwal (PhD '11). "This is a big step in our understanding of the evolution of massive stars and their relation to supernovae," she says.
The second paper, "Discovery and Redshift of an Optical Afterglow in 71 degrees squared: iPTF13bxl and GRB 130702A," appears in the October 20 issue of Astrophysical Journal Letters. Lead author Leo Singer, a Caltech grad student, describes finding and characterizing the afterglow of a long gamma-ray burst (GRB) as being similar to digging a needle out of a haystack.
Long GRBs, which are the brightest known electromagnetic events in the universe, are also connected with the deaths of rapidly spinning, massive stars. Although such GRBs initially are detected by their high-energy radiationGRB 130702A, for example, was first located by NASA's Fermi Gamma-ray Space Telescopean X-ray or visible-light afterglow must also be found to narrow down a GRB's position enough so that its location can be pinpointed to one particular galaxy and to determine if it is associated with a supernova.
After Fermi's initial detection of GRB 130702A, iPTF was able to narrow down the GRB's location by scanning an area of the sky over 360 times larger than the face of the moon and sifting through hundreds of images using sophisticated machine-learning software; it also revealed the visible-light counterpart of the burst, designated iPTF13bxl. This is the first time that a GRB's position has been determined precisely using optical telescopes alone.
After making the initial correlation between the GRB and the afterglow, Singer and colleagues corroborated their results and gained additional information using a host of other instruments, including optical, X-ray, and radio telescopes. In addition, ground-based telescopes around the world monitored the afterglow for days as it faded away, and recorded the emergence of a supernova five days later.
According to Singer, GRB130702A / iPTF13bxl turned out to be special in many ways.
"First, by measuring its redshift, we learned that it was pretty nearby as far as GRBs go," he says. "It was pretty wimpy compared to most GRBs, liberating only about a thousandth as much energy as the most energetic ones. But we did see it eventually turn into a supernova. Typically we only detect supernovae in connection with nearby, subluminous GRBs, so we can't be certain that cosmologically distant GRBs are caused by the same kinds of explosions."
"The first results from iPTF bode well for the discovery of many more supernovae in their infancy and many more afterglows from the Fermi satellite", says Shrinivas Kulkarni, the John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science at Caltech and principal investigator for both the PTF and iPTF.
###
The iPTF project is a scientific collaboration between Caltech; Los Alamos National Laboratory; the University of Wisconsin, Milwaukee; the Oskar Klein Centre in Sweden; the Weizmann Institute of Science in Israel; the TANGO Program of the University System of Taiwan; and the Kavli Institute for the Physics and Mathematics of the Universe in Japan.
[
| Share
]
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Public release date: 16-Oct-2013
[
| Share
]
Contact: Brian Bell
bpbell@caltech.edu
626-395-5832
California Institute of Technology
Caltech astronomers report on unique results from the intermediate Palomar Transient Factory
Developed to help scientists learn more about the complex nature of celestial objects in the universe, astronomical surveys have been cataloguing the night sky since the beginning of the 20th century. The intermediate Palomar Transient Factory (iPTF)led by the California Institute of Technology (Caltech)started searching the skies for certain types of stars and related phenomena in February. Since its inception, iPTF has been extremely successful in the early discovery and rapid follow-up studies of transientsastronomical objects whose brightness changes over timescales ranging from hours to daysand two recent papers by iPTF astronomers describe first-time detections: one, the progenitor of a rare type of supernova in a nearby galaxy; the other, the afterglow of a gamma-ray burst in July.
The iPTF builds on the legacy of the Caltech-led Palomar Transient Factory (PTF), designed in 2008 to systematically chart the transient sky by using a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain near San Diego, California. This state-of-the-art, robotic telescope scans the sky rapidly over a thousand square degrees each night to search for transients.
Supernovaemassive exploding stars at the end of their life spanmake up one important type of transient. Since PTF's commissioning four years ago, its scorecard stands at over 2,000 spectroscopically classified supernovae. The unique feature of iPTF is brand-new technology that is geared toward fully automated, rapid response and follow-up within hours of discovery of a new supernova.
The first paper, "Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn," appears in the September 20 issue of Astrophysical Journal Letters and describes the detection of a so-called Type Ib supernova. Type Ib supernovae are rare explosions where the progenitor star lacks an outer layer of hydrogen, the most abundant element in the universe, hence the "stripped envelope" moniker. It has proven difficult to pin down which kinds of stars give rise to Type Ib supernovae. One of the most promising ideas, says graduate student and lead author Yi Cao, is that they originate from Wolf-Rayet stars. These objects are 10 times more massive and thousands of times brighter than the sun and have lost their hydrogen envelope by means of very strong stellar winds. Until recently, no solid evidence existed to support this theory. Cao and colleagues believe that a young supernova that they discovered, iPTF13bvn, occurred at a location formerly occupied by a likely Wolf-Rayet star.
Supernova iPTF13bvn was spotted on June 16, less than a day after the onset of its explosion. With the aid of the adaptive optics system used by the 10-meter Keck telescopes in Hawaiiwhich reduces the blurring effects of Earth's atmospherethe team obtained a high-resolution image of this supernova to determine its precise position. Then they compared the Keck image to a series of pictures of the same galaxy (NGC 5806) taken by the Hubble Space Telescope in 2005, and found one starlike source spatially coincident to the supernova. Its intrinsic brightness, color, and sizeas well as its mass-loss history, inferred from supernova radio emissionswere characteristic of a Wolf-Rayet star.
"All evidence is consistent with the theoretical expectation that the progenitor of this Type Ib supernova is a Wolf-Rayet star," says Cao. "Our next step is to check for the disappearance of this progenitor star after the supernova fades away. We expect that it will have been destroyed in the supernova explosion."
Though Wolf-Rayet progenitors have long been predicted for Type Ib supernova, the new work represents the first time researchers have been able to fill the gap between theory and observation, according to study coauthor and Caltech alumna Mansi Kasliwal (PhD '11). "This is a big step in our understanding of the evolution of massive stars and their relation to supernovae," she says.
The second paper, "Discovery and Redshift of an Optical Afterglow in 71 degrees squared: iPTF13bxl and GRB 130702A," appears in the October 20 issue of Astrophysical Journal Letters. Lead author Leo Singer, a Caltech grad student, describes finding and characterizing the afterglow of a long gamma-ray burst (GRB) as being similar to digging a needle out of a haystack.
Long GRBs, which are the brightest known electromagnetic events in the universe, are also connected with the deaths of rapidly spinning, massive stars. Although such GRBs initially are detected by their high-energy radiationGRB 130702A, for example, was first located by NASA's Fermi Gamma-ray Space Telescopean X-ray or visible-light afterglow must also be found to narrow down a GRB's position enough so that its location can be pinpointed to one particular galaxy and to determine if it is associated with a supernova.
After Fermi's initial detection of GRB 130702A, iPTF was able to narrow down the GRB's location by scanning an area of the sky over 360 times larger than the face of the moon and sifting through hundreds of images using sophisticated machine-learning software; it also revealed the visible-light counterpart of the burst, designated iPTF13bxl. This is the first time that a GRB's position has been determined precisely using optical telescopes alone.
After making the initial correlation between the GRB and the afterglow, Singer and colleagues corroborated their results and gained additional information using a host of other instruments, including optical, X-ray, and radio telescopes. In addition, ground-based telescopes around the world monitored the afterglow for days as it faded away, and recorded the emergence of a supernova five days later.
According to Singer, GRB130702A / iPTF13bxl turned out to be special in many ways.
"First, by measuring its redshift, we learned that it was pretty nearby as far as GRBs go," he says. "It was pretty wimpy compared to most GRBs, liberating only about a thousandth as much energy as the most energetic ones. But we did see it eventually turn into a supernova. Typically we only detect supernovae in connection with nearby, subluminous GRBs, so we can't be certain that cosmologically distant GRBs are caused by the same kinds of explosions."
"The first results from iPTF bode well for the discovery of many more supernovae in their infancy and many more afterglows from the Fermi satellite", says Shrinivas Kulkarni, the John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science at Caltech and principal investigator for both the PTF and iPTF.
###
The iPTF project is a scientific collaboration between Caltech; Los Alamos National Laboratory; the University of Wisconsin, Milwaukee; the Oskar Klein Centre in Sweden; the Weizmann Institute of Science in Israel; the TANGO Program of the University System of Taiwan; and the Kavli Institute for the Physics and Mathematics of the Universe in Japan.
[
| Share
]
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-10/ciot-ssc101613.php
Category: Healthcare.gov 9 news